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The aim to find the perfect biomaterial for spinal implant has been the focus of spinal re-
search since the 1800s. Spinal surgery and the devices used therein have undergone a con-
stant evolution in order to meet the needs of surgeons who have continued to further un-
derstand the biomechanical principles of spinal stability and have improved as new technol-
ogies and materials are available for production use. The perfect biomaterial would be one 
that is biologically inert/compatible, has a Young’s modulus similar to that of the bone where 
it is implanted, high tensile strength, stiffness, fatigue strength, and low artifacts on imag-
ing. Today, the materials that have been most commonly used include stainless steel, tita-
nium, cobalt chrome, nitinol (a nickel titanium alloy), tantalum, and polyetheretherketone 
in rods, screws, cages, and plates. Current advancements such as 3-dimensional printing, 
the ProDisc-L and ProDisc-C, the ApiFix, and the Mobi-C which all aim to improve range 
of motion, reduce pain, and improve patient satisfaction. Spine surgeons should remain 
vigilant regarding the current literature and technological advancements in spinal materials 
and procedures. The progression of spinal implant materials for cages, rods, screws, and 
plates with advantages and disadvantages for each material will be discussed. 
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INTRODUCTION

Spinal surgery has existed for since Jules Gerin first attempt-
ed surgical scoliosis correction in 1839.1 In the late 1800’s Dr. 
Berthold Earnest Hadra created a fixation device for C6–7 dis-
locations using silver wire that he later applied to the treatment 
of Potts disease.2 His methods gained the attention of orthope-
dists across Europe who modified it to stabilize the spinous pro-
cesses, laminae, and pedicles for the cervical spine using wiring, 
lateral mass screws, plates, and rods, and pedicle screws.3-5 Since 
its inception, spinal surgery and the devices used therein have 
undergone a constant evolution in order to (1) meet the needs 
of surgeons who have continued to further understand the bio-
mechanical principles of spinal stability and (2) have improved 
as new technologies and materials are available for production 

use. Spinal implants need to demonstrate biostability (ability to 
resist the effects of micro-oganisms) and biocompatibility (not 
harmful to living tissue) and the difficulty in finding an optimal 
material lies in determining a material with an appropriate Young’s 
modulus (also known as Elastic Modulus, the stress to strain 
ratio which demonstrates increased stiffness and brittleness 
with higher values), stiffness, and fatigue.6 The materials that 
have been most commonly used include stainless steel (SS), ti-
tanium, cobalt chrome, nitinol (a nickel titanium alloy), tanta-
lum, and polyetheretherketone (PEEK). The perfect biomaterial 
would be one that is biologically inert/compatible, has a Young’s 
modulus similar to that of the bone where it is implanted, high 
tensile strength, stiffness, fatigue strength, and low artifacts on 
imaging. This review article will discuss the uses of these vari-
ous biomaterials and their application in spinal implants. The 
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progression of spinal implant materials for cages, rods, screws, 
and plates will be discussed with advantages and disadvantages 
for each material as have been demonstrated in multiple clini-
cal studies.

BIOMATERIALS IN VARIOUS TYPES OF 
SPINAL IMPLANTS

1. Cages
Cages are spinal implants that act as a stabilizer for force dis-

tribution between vertebral bodies and to restore the height of 
the intervertebral and foramina space.7 They provide a graft for 
vertebrae to refuse and heal when an intervertebral disc has 
failed.7 Originally, autologous bone grafts were used; however, 
donor site morbidity combined with high failure rates resulting 
from collapse, subsidence, retropulsion, or resorption of the 
graft with prolonged healing time was frequently seen.8

Cages are typically made of metal – ranging from pure titani-
um (PTi), titanium composite/alloy, ceramic – usually silicon 
nitride, or plastic – usually PEEK or another bioinert plastic 
such as acrylic by itself or coated in another material (such as 
hydroxyapatite [HA] or titanium).9-14 These cages are porous as 
to allow the bones to grow through them and stabilize.15

The most popular materials used today are titanium (titani-
um-aluminum-vanadium, Ti6Al4V) and PEEK (Tables 1, 2).16 
PTi and titanium alloys are the preferred metal in orthopaedic 
implants due to their high fracture resistance and biocompati-
bility.17 Titanium has a superior biocompatibility, corrosion re-

sistance, and Young’s modulus compared with SS and cobalt 
counterparts (Fig. 1).18 The major issue with polished or abrad-
ed titanium is its lack of bone-bonding ability, hence increased 
research has been done to coat/dope titanium alloys to improve 
bone-bonding.

PEEK has a similar Young’s modulus compared to bone, with-
out sufficient doping such as titanium plasma spray and vapor 
deposition, has weak surface interfaces that can fracture upon 
cage implantation.19 PEEK has radiographic properties that al-
low surgeons to monitor possible migration and success of the 

Table 1. Common biomaterials used in spine surgery

Implant Implementation procedure Standard materials Upcoming materials

Cage Anterior/posterior interbody fusion -  
Restores height of collapsed disc from  
injury, DDD, or scoliosis.

Titanium
PEEK
Ceramic
Acrylic

Bioactive glass
Silicon nitride
Apatite-Wollastonite
poly(ε-caprolactone)+HA (biodegradable)

Screws Pedicle screw fixation - Holds vertebrae 
together to attach plates and rods.

Titanium (Ti6Al4V) doped with:
HA
CaP
ECM
Tantalum

Carbonated apatite

Rods Spinal fusion - Adds stability to a spinal 
implant. Used for scoliosis correctional 
surgery.

Titanium
CoCr
PEEK
Stainless steel
Nitinol

Ti-Mo
Oxygen-modified beta-type Ti-Cr
Biodegradable materials

Plates Spinal stabilization Titanium Biodegradable materials

DDD, degenerative ddisc disease; PEEK, polyetheretherketone; Ti6Al4V, titanium-aluminum-vanadium; HA, hydroxyapatite; CaP, calcium 
phosphate; ECM, extracellular matrix; CoCr, cobalt-chromium alloys; Ti-Mo, titanium-molybdenum; Ti-Cr, titanium-chronium.

Fig. 1. Young’s modulus of common biomaterials.  
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implant. However, the primary issue with PEEK is that it is hy-
drophobic and unable to bond to bone to achieve a solid fusion.20 
Research has shown that there may be associations with cage 
migration and pseudarthrosis.21 It has also been shown that PEEK 
has a significantly lower stress compression strength compared 
to titanium (2.5 times weaker).22 However, for anterior cervical 
discectomy and fusion (ACDF) surgeries, it has been shown 
that PEEK cages have a significantly lower loss of Cobb angles 
and lower cage subsidence rate compared to titanium (34.5% 
and 5.4% respectively).23

Increased research for advancements in disc separation has 
been made to find more biocompatible materials than titanium 
and PEEK to improve bone grafting. Experimentation with sili-
con nitride (Si3N4) showed no significant different compared to 
PEEK.24 Other studies have tried an Apatite-Wollastonite (A/
W) ceramic cage to replace the PEEK cages. However, like the 
silicon nitride cage materials, there was no significant advan-
tage of the A/W cage compared to the porous PEEK cages.25 An 

additional study performed stress/strain tests on porous biode-
gradable materials such as poly(ε-caprolactone) combined with 
HA. Computational and in vitro modeling confirmed the me-
chanical integrity of the new biodegradable material within the 
human spine.26 Many of these studies have demonstrated that 
there are many theoretical models that seem to have promising 
results; however, no clinical data have been published in human 
trails to date for these materials.

2. Rods
Spinal rods are used in conjunction with other spinal implants 

to add stability to spinal implant structure. Rods are contoured 
to a specific patient to fit the spine. In 1962, Dr. Harrington in-
troduced the “Harrington Rod” – an SS rod – for surgical treat-
ment of scoliosis.27 However, rod contouring (such as French 
Benders) imparts marks and weaknesses onto the rod that com-
promise its durability.28

Rods were initially made of SS to provide sufficient stability 

Table 2. Characteristics of biomaterials

Materials Advantages Disadvantages Application

Stainless steel Very strong
Very stiff
Easily doped/alloyed to be stronger
Inexpensive

Corrosion
Relatively poor biocompatibility
High artifacts in imaging

Scoliosis correction (rods)
Formerly used in screws; now mostly replaced 

by titanium 

Titanium Lightweight
Strong
Flexible
Biocompatible
Easily doped/alloyed to be stronger

Relatively Expensive
Some artifacts during imaging 

Screws
Rods
Plates
Cages

PEEK Lightweight
Flexible
Relatively Inexpensive
Biocompatible
Easily doped/coated for improved grafting
Low artifacts on imaging

Low Young’s modulus
Some grafting issues, but improved 

with coatings

Rods
Cages
Disc replacement

CoCr Strong
Flexible
Biocompatible

Relatively expensive
High artifacts on imaging

Adolescent scoliosis correction (rods) to  
provide a more flexible buttress for the  
spine to curve about. 

Ceramic Relatively inexpensive
Biocompatible
Ware resistant
Easily doped

Brittle
Grafting issues, but can be  

improved with coating/doping

Used in cage biomaterials
Doped with A/W

Nitinol Strong
“Memory metal” (shape recovery)

Relatively expensive
Sometimes not stiff enough for 

proper correction 

Not frequently used, but can be implemented 
for young scoliosis correctional surgery. 

Tantalum High frictional characteristics
Low Young’s modulus

Very expensive
Not stuff enough for some spinal 

corrections. 

Not frequently used due to its price. 
Has primarily been phased out completely by 

titanium.

PEEK, polyetheretherketone; CoCr, cobalt-chromium alloys; A/W, Apatite-Wollastonite.
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and stiffness for proper spine alignment.29 Today, rods are typi-
cally made of titanium or PEEK. The shift from SS to titanium 
resulted from titanium’s improved biomechanical properties to 
bone (similar modulus elasticity of cortical bone), improved 
biocompatibility, and improvements in stress shielding of lum-
bar pedicle instrumentation.30,31

The metal rods used today fall into one of 3 alloy families: iron 
(Fe)-chromium (Cr)-nickel (Ni) alloys and austenitic SS, titani-
um and its alloys (PTi and Ti6Al4V alloy), and cobalt-chromi-
um alloys (CoCr). These alloys were chosen because they are 
relatively biocompatible and are protected from corrosion by 
the presence of a stable oxide layer; however, SS is the least cor-
rosion resistant.32 Of these metals, titanium has gained popular-
ity due to its biomechanical properties as well as its significantly 
few artifacts on imaging.33

These other metal rods are stiffer than titanium rods. CoCr 
rods have gained recent popularity with adolescent idiopathic 
scoliosis with promising frontal correction rate in all-screw con-
structs due to their increased rigidity compared to titanium, 
closer reflecting SS.34 CoCr provided fewer complications in 
human trials and allowed for better thoracic sagittal realign-
ment compared to titanium (p= 0.01).35 The primary drawback 
of CoCr compared to titanium is cost and increased artifacts on 
MRI; however, a study has shown that the spinal canal and neu-
ral element analysis was not impinged by the CoCr artifacts.36

Nitinol (50% Ni and 50% Ti) rods—also called memory rods 
—are not as common as Ti since the metal is expensive and 
notch-sensitive.37 Nitinol is unique compared to SS or Ti be-
cause it can be placed in the spinal canal with no inflammatory 
response from the lymph nodes or other organs.38 Nitinol shape 
recovery force have been used to achieve scoliosis correction. 
However, Nitinol is not frequently used due to its higher costs 
and lower Young’s modulus compared to Ti or SS rods.39

Besides the rigid metal rods, there are semirigid rods. One of 
the most popular is the PEEK rods. It has been shown that PEEK 
provides comparable stability compared to titanium rods of sim-
ilar size.40 Some advantages of PEEK compared to titanium are 
load sharing; PEEK rods allow for greater contact between the 
end plate and bone graft due to its improved biological compli-
ance and elasticity. PEEK is a radiolucent material, providing an 
advantage over other metallic devices since it results in only 
minor artifact on postoperative computed tomography and 
magnetic resonance imaging; however, it is more difficult for 
clinicians to identify faults and breaks within the PEEK rods, 
thus some PEEK rods use a contrast agent to improve imag-
ing.41 Some possible disadvantages to PEEK rods range from 

higher failure rates with early reoperations and insufficient ca-
pabilities of PEEK to form a stable union with the screw inter-
face, leading to increased rates of pseudarthrosis.42

Many biomechanical studies have shown that when rods are 
bent to fit a patient using a French bender, significant surface 
defects and weakness are introduced.43 Rod fatigue, fractures, 
and significant deformation almost always occur at these notch 
points and at the screw-rod junction.44 One study showed that 
notching and bending significantly reduces the mechanical sta-
bility of titanium alloy rods, but not SS rods (p< 0.05).28 Clini-
cal studies have found that waved rods have significantly im-
proved fusion rates compared to rigid pedicle screws (45/50 
compared to 36/46, p= 0.039).45

New research is being conducted to create more efficient and 
more failure-resistant materials. Beta-type titanium-molybde-
num and oxygen-modified beta-type titanium-chronium alloys 
have demonstrated promising Young’s Moduli, high bending 
strength, and high tensile strength.44,46 A study has shown that 
polycarbonate-urethane rods demonstrated more comparable 
intradiscal pressure compared to titanium rods consistently 
through 3,000 loading cycles (p< 0.05).47 Another study tested 
the feasibility of biodegradable rods for posterior lumbar fusions 
in vitro which demonstrated that the biodegradable rods—like 
the standard titanium rods—could withstand 5,000,000 dynam-
ic compression cycles under a 145 N axial load. However, the 
biodegradable rods had a 20% and 80% decrease in Young’s 
modulus after 6 months and 12 months.48 Furthermore, both of 
these studies were done not done in human trials or under true 
biological conditions, thus not all the effects of wear and tear 
could be measured and tested.

3. Pedicle Screws
Pedicle screws are frequently used in spinal surgeries. Pedicle 

screw and rod posterior spinal fusion has become the clinical 
standard for the treatment of scoliosis since the pedicle screws 
can redirect force through the powerful vertebral bodies.49 To 
withstand such great force, pedicle screws need to be made of a 
material that is strong, but also bioinert, thus, many today are 
made of Ti6Al4V.50

While pedicle screws provide some of the best correctional 
results in spinal surgery, some of the most common complica-
tions of pedicle screw placement include loosening, pullout, 
and screw breakage that can severely affect the bone healing 
process.51 Various studies have tried coating and doping the 
pedicle screws with different materials ranging from HA, calci-
um phosphate (CaP), polymethymethacrylate bone cement 
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(PMMA-BC), extracellular matrix (ECM), tantalum, and tita-
nium plasma spray. It was found that coating the Ti6Al4V screws 
with HA can improve resistance against pullout force compared 
to uncoated (165.6± 26.5N vs. 103.1± 30.2 N, p< 0.001)52 and 
had an improved bone-to-implant contact (64%± 31% vs. 9%±  
13%)53 respectively.

A study that compared HA, CaP, and PMMA-BC showed 
that there was no significant difference between the controls 
versus HA or CaP (pHA = 0.6 and pCaP= 0.234); however, the pull-
out strength differences between PMMA-BC and control were 
significantly different (p= 0.026).54 Although PMMC-BC has a 
significantly greater pullout strength compared to the control, it 
is a far more rigid and solidified cement structure and cannot 
be modified easily postoperationally compared to HA or CaP. 
Another study coated the Ti6Al4V pedicle screws with tanta-
lum and analyzed numerous effects a thin tantalum coating had 
on the performance of the Ti6Al4V screws. The tantalum screws 
had improved bone osteoclast proliferation in vitro, strong inte-
gration capacity of trabecular bone surrounding the screws, 
and greater pullout strength 12 weeks after fixation compared 
to the conventional Ti6Al4V screws in vivo.55 Coating the pedi-
cle screws with ECM also seemed to improve pullout strength 
when combined with HA compared to the uncoated screws. 
There was no significant difference in the pullout strength be-
tween the screws coated in just ECM vs screws just coated in 
HA, but there was a significant difference in pullout strength 
between screws coated in HA+ECM vs. HA or ECM alone.56

New developments in pedicle screws have not focused much 
on the Ti6Al4V screw itself, but rather novel coatings and/or 
new cement on the Ti6Al4V screw to improve fixation and pull-
out strength. Lotz et al.57 performed cadaveric lumbar tests with 
uncoated pedicle screws and pedicle screws in conjunction with 
the carbonated apatite cancellous bone cement demonstrated 
an average 68% (p< 0.001) greater pullout strength compared 
to the control screws.

In addition to pedicle screw biomaterial properties, techno-
logical advancements in screw design have recently occurred. 
The first pedicle screws were monoaxial and although provided 
good vertebral stabilization and correction, had difficulty ade-
quately seating the rod in the screw.58 This deficiency could re-
sult in movement of the screw within the vertebral body—caus-
ing loosening of the screw—and/or inadequate closure of the 
screw-rod connection.59 Polyaxial pedicle screws used in unilat-
eral or bilateral fixation are made out of titanium.60 Polyaxial 
screws have been subsequently implemented and designed to 
provide increased freedom on the screw-to-rod connection to 

facilitate easier rod seating into the screw head saddle. It has 
been shown that adjacent segment degeneration is less likely to 
be observed in polyaxial pedicle screw fixation than in mono-
axial fixation due to lower von Mises stress in the polyaxial ped-
icle screws compared to the monoaxial pedicle screws.61 A com-
promise between monoaxial and polyaxial screws was the uni-
planar or uniaxial screw construct, designed to accommodate 
sagittal angle variation of the pedicle screws with respect to rods. 
Uniplanar screws showed less residual apical vertebral rotation 
after a 1-year postoperative evaluation (p< 0.001).62

Problems associated with pedicle screws include loss of fixa-
tion, improper placement, fatigue and bending failure, dural 
tears, cerebral spinal fluid leaks, nerve root injury, and infec-
tion.63-65 Bending or breakage is the most common type of ped-
icle screw failure.66 Screw diameter, screw length, insertional 
depth, orientation, and cross-link conduits all affect bending 
and breakage.67 Biomechanical studies show that osteoporosis, 
cortical fixation, pedicle morphology, screw orientation, bone 
density, screw thread area, and screw orientation all affect pedi-
cle screw pullout.68,69

4. Plates
Spinal plates are a pinnacle implant to stabilize and restore 

normal alignment to the spine. Biomechanical experiments for 
stress-strain analyses performed from T12–L4 and suggested 
that a titanium-plate fixation and laminectomy was more stable 
than just laminectomy or just a plate (p< 0.05).70 Many plates 
are traditionally made of PTi or Ti6Al4V.71 Some plates have 
been developed to incorporate additional elements such as poly-
ethylene ring utilized as a screw locking mechanism within the 
plate.72 New developments in spinal plate technology include 
development of biodegradable plates that have been developed 
and tested in vitro compared to the standard titanium plate. The 
strong biodegradable plate and bone block (PLA-4G) have sim-
ilar range of motion, torque strength, and von Mises stress re-
sults as titanium, and has a lower Young’s modulus compared 
to titanium (4,000 N/mm2 vs. 10,000 N/mm2).73 The biodegrad-
able plate is not paramagnetic, reducing artifacts on future im-
aging studies.

Mini-plate systems are extensively applied to cervical lami-
noplasty for patients with multilevel cervical compressive my-
elopathy and to secure the posterior elements in the open posi-
tion after an expansive open-door laminoplasty.74 These mini-
plates are typically made of titanium, but research into develop-
ing a cheaper model for mini-plates is ongoing.75
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NEW DEVELOPMENTS

1. Lumbar Spine Disc Replacement
Total disc replacement (TDR) has yielded comparable or su-

perior outcomes compared to lumbar fusion over a 2-year time 
period, preserving functional movement unlike with spinal fu-
sion.76 TDR had a relatively low rate of complications after a 
5-year meta-analysis for lumbar TDR (0%–16.7%) and cervical 
(0%–4.0%).77 The first lumbar disc replacement was a steel ball 
implanted in 1960, which ultimately led to multiple postopera-
tive complications.78 In the 1980s, the implants shifted from a 
SS ball to 2 plates made of steel or titanium with a polyethylene 
sliding core in between them.79 There was an additional im-
plant called the SB Chartie prothesis which consisted of 2 chro-
mium-cobalt plates and a mobile polyethylene core.80 In 1989, 
the ProDisk-L was developed which had plates with a central 
titanium stem.81 Ceramics were considered since they are more 
resistant to wear, but are significantly more fragile due to their 
low ductility. Surface coatings and anchorage to promote osseo-
integration ranged from HA, tricalcium phosphate, porous tita-
nium or chromium-cobalt.

The ProDisc-L implants are made of a cobalt-chromium-mo-
lybdenum with an ultra-high molecular weight polyethylene 
combined with a rough titanium surface coating to promote 
bone growth alloy.82 ProDisc-L showed significant improve-
ment in fusion and Oswestry Disability Index (p< 0.001) com-
pared to circumferential arthrodesis.82

The ApiFix system is a new, less-invasive fusionless scoliosis 
correction system that connects 2 periapical pedicle screws thr
ough polyaxial mobile ball-and-socket joints with a rod.83 It 
was demonstrated that this implant halved the range of motion 
of flexion-extension (-40% in humans), Lateral bending was 
partially affected (-18.2% in humans), axial rotation was not af-
fected.

2. Cervical Spine Disc Replacement
The ProDisc-C implants are made of a cobalt-chromium-mo-

lybdenum with an ultra-high molecular weight polyethylene 
combined with a rough titanium surface coating to promote 
bone growth alloy.82 ProDisc-C has been found to restore range 
of motion of the entire neck back to preoperative state in late 
phase postoperative surgery. It was also suggested that segmen-
tal degenerative kyphosisc was significantly corrected in those 
who underwent ProDisc-C replacement.84

Another recent development is the Mobi-C cervical disc proth-
esis. The Mobi-C disc has 3 parts: 2 metal plates (typically made 

out of cobalt, chromium and molybdenum) covered with a HA 
coating (to improve bone grafting) and a plastic plate (made 
from polyethylene) at the center.85 Mobi-C has demonstrated 
equal or increased improvement in range of motion, pain and 
short-form scores compared to the standard ACDF.86 It has been 
shown that Mobi-C artificial discs resulted in an improved neck 
disability index score, patient satisfaction and reduced surgical 
intervention compared to ACDF.85 Additional conclusive long-
term clinical data is needed.

THREE-DIMENSIONAL PRINTING, AND 
ADVANCES IN SPINAL IMPLANTS

Three-dimensional (3D) printing is the most frequently uti-
lized in preoperative planning stages, printing templates out of 
plastic—including but not limited to acrylonitrile butadiene 
styrene, acrylate resin, acrylate resin, polyamide photosensitive 
resin, titanium, and polylactic acid.87 Pedicle screw templates 
have been printed with a 94.60% acceptable rate with cervical 
spine surgery.88 These models have been proven to reduce the 
perioperative blood loss during complicated spinal fusion sur-
geries as well as reduction in fluoroscopy time, improved com-
munication with the surgical team, and lower rates of screw 
misplacements.89 Models have also shown to reduce operation 
time by 15%–20% through a more involved pathology (location 
and surgical approach) as well as facilitation of preoperative in-
strumentation decisions.89 These models cost an additional $300 
to over $1,000 and take between 5 hours and 2 days to create.90 
However, limitations with preoperative modeling exist ranging 
from lack of surgically useful information such as joint instabil-
ity and a sense of real-time information as provided with imag-
ing combined with a significant learning curve for the software 
and hardware required to create the models.87,88,91

Arguably the most exciting application of 3D printing is the 
ability of surgeons to create specifically-designed implants for 
each patient. So far, a majority of the implants have been made 
out of titanium (TiV6Al4) due to its biocompatibility for appli-
cations ranging from C1/2 posterior fixation devices to Sacrum 
replacements.92-94 However, there is an increased research effort 
towards 3D printing biodegradable scaffolds using a degradable 
polyurethane to mimic the elasticity of the intervertebral disc.95 
Tissue and bone engineering is being explored as possible alter-
natives to biodegradable plastics for intervertebral discs and oth-
er spinal implants.96
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CONCLUSION

Spinal implants have come a long way from the original 1890s 
silver wire fusion methods. Now, the standard material is either 
PEEK or titanium. New research is being conducted to find ma-
terials with increased bone grafting properties (by doping exist-
ing materials or developing new materials), improving strength/ 
Young’s modulus, and developing novel ideas to prevent further 
postoperative complications by improving range of motion, de-
creasing pain, distributing anatomic forces to decrease adjacent 
segment disease, and minimizing the necessity for additional 
spinal surgery. New developments in biomaterials for spinal 
implants and the advent of new technologies, like 3D printed 
patient-specific implants, have made incredible progress in bio-
compatibility of spinal tools. Spine surgeons should remain vig-
ilant regarding the current literature and technological advance-
ments in spinal materials and procedures.
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